
MMaallccoollmm KKaayysseerr CCoommppuutteerr TTrraaiinniinngg LLiimmiitteedd

Malcolm Kayser Computer Training Ltd, Stanmore, Middx.
Tel: +44 (0)20 8954 1981; e-mail: malcolm@malkayser.plus.com; website: www.malkayser.plus.com

JACKSON STRUCTURED PROGRAMMING

This course provides a thorough and detailed set of procedures for writing good
structured code based on a data-driven design method. The emphasis is on producing
efficient, logically sound and easy to maintain program code. However, no
programming language is taught.

Audience

The course is intended for trainee, junior
and experienced programmers who need
to be able to write programs in a clear and
well-structured manner.

Prerequisites

An aptitude for programming would be
useful but no prior programming
experience or program design is
necessary. The delegate, however,
should be open-minded when it comes to
thinking about program design. Following
this course, the delegate may then attend
one of the programming courses, such as
COBOL Programming

Duration

Three days (but may be extended if more
time required). The course is taught using
desk exercises in each topic to enable the
delegate to master the techniques. There
are no computer-based practical
exercises.

Course objectives

On completion of this course the delegate
will be able to:

• understand what is system
development

• understand the need for good
program design

• produce file data structures

• merge data structures

• create basic program structures

• define program operations

• decide upon program conditions

• create a full program structure

• produce program pseudo-code

• produce complex designs

• have an understanding of
advanced design techniques

Course contents

Introduction to Program Development
The delegate is given an overview
of program application
development with the emphasis
on the program specification, and
concludes with the history of
design methods.

Introduction to JSP
The delegate is introduced to the
basics of the method, the five
steps to deriving an efficient
program, and the basic constructs
of a program, namely: Sequence,
Selection and Iteration. All this is
demonstrated using an example of
the method.

Creating Data Structures
The first part of the design method
is discussed more fully with the
emphasis on designing the data
structures both physically and
logically. Using the three basic
constructs creates a data structure
for each file.

Creating the basic Program Structure
After all the data structures have
been drawn, they must be merged
into a single structure. This is
done by identifying
correspondences (a one-to-one
relationship) between the entities
of each data structure.

Providing Functionality to the Program
Structure

In this stage of the method, the
actions (operations) that the
program is to perform must be
listed and assigned to the basic
program structure. The conditions
the program needs to enable
correct logical processing of the
data will also need to be
discussed and assigned.

MMaallccoollmm KKaayysseerr CCoommppuutteerr TTrraaiinniinngg LLiimmiitteedd

Malcolm Kayser Computer Training Ltd, Stanmore, Middx.
Tel: +44 (0)20 8954 1981; e-mail: malcolm@malkayser.plus.com; website: www.malkayser.plus.com

JACKSON STRUCTURED PROGRAMMING

Course contents continued

Schematic Logic
Although the previous stage
produces a complete program
structure, it often the case that
schematic logic (pseudo-code) is
created to enable the programmer
to code more easily in the chosen
computer language. The
terminology and the layout of JSP
pseudo-code are discussed.

Adapting the Pseudo-Code
The delegate is shown how to
enhance the pseudo-code to take
advantage of the native computer
language's constructs. Examples
using popular high-level
languages are given.

Introducing Advanced Design Techniques
The delegate is introduced briefly
to techniques such as Validation,
Multiple read-ahead and
Backtracking, Two-file Merge and
Collation, and Structure Clashes.

